Extended Object Tracking Using Mixture Kalman Filtering
نویسندگان
چکیده
This paper addresses the problem of tracking extended objects. Examples of extended objects are ships and a convoy of vehicles. Such kind of objects have particularities which pose challenges in front of methods considering the extended object as a single point. Measurements of the object extent can be used for estimating size parameters of the object, whose shape is modeled by an ellipse. This paper proposes a solution to the extended object tracking problem by mixture Kalman filtering. The system model is formulated in a conditional dynamic linear (CDL) form. Based on the specifics of the task, two latent indicator variables are proposed, characterising the mode of maneuvering and size type, respectively. The developed Mixture Kalman filter is validated and evaluated by computer simulation.
منابع مشابه
On-Line Nonlinear Dynamic Data Reconciliation Using Extended Kalman Filtering: Application to a Distillation Column and a CSTR
Extended Kalman Filtering (EKF) is a nonlinear dynamic data reconciliation (NDDR) method. One of its main advantages is its suitability for on-line applications. This paper presents an on-line NDDR method using EKF. It is implemented for two case studies, temperature measurements of a distillation column and concentration measurements of a CSTR. In each time step, random numbers with zero m...
متن کاملEstimation of LOS Rates for Target Tracking Problems using EKF and UKF Algorithms- a Comparative Study
One of the most important problem in target tracking is Line Of Sight (LOS) rate estimation for using from PN (proportional navigation) guidance law. This paper deals on estimation of position and LOS rates of target with respect to the pursuer from available noisy RF seeker and tracker measurements. Due to many important for exact estimation on tracking problems must target position and Line O...
متن کاملImproved Bearings-Only Multi-Target Tracking with GM-PHD Filtering
In this paper, an improved nonlinear Gaussian mixture probability hypothesis density (GM-PHD) filter is proposed to address bearings-only measurements in multi-target tracking. The proposed method, called the Gaussian mixture measurements-probability hypothesis density (GMM-PHD) filter, not only approximates the posterior intensity using a Gaussian mixture, but also models the likelihood functi...
متن کاملWeighting Observations: The Use of Kinematic Models in Object Tracking
We describe a model-based object tracking system that updates the configuration parameters of an object model based upon information gathered from a sequence of monocular images. Realistic object and imaging models are used to determine the expected visibility of object features, and to determine the expected appearance of all visible features. We formulate the tracking problem as one of parame...
متن کاملFixed-point FPGA Implementation of a Kalman Filter for Range and Velocity Estimation of Moving Targets
Tracking filters are extensively used within object tracking systems in order to provide consecutive smooth estimations of position and velocity of the object with minimum error. Namely, Kalman filter and its numerous variants are widely known as simple yet effective linear tracking filters in many diverse applications. In this paper, an effective method is proposed for designing and implementa...
متن کامل